
www.manaraa.com

University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

9-1-2003

The Piazza Peer Data Management Project
Igor Tatarinov
University of Washington

Zachary G. Ives
University of Pennsylvania, zives@cis.upenn.edu

Jayant Madhavan
University of Washington

Alon Halevy
University of Washington

Dan Suciu
University of Washington

See next page for additional authors

Copyright ACM, 2003. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in ACM SIGMOD Record, Volume 32, Issue 3, September 2003, pages 47-52.
Publisher URL: http://doi.acm.org/10.1145/945721.945732

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/117
For more information, please contact repository@pobox.upenn.edu.

http://repository.upenn.edu
http://repository.upenn.edu/cis_papers
http://repository.upenn.edu/cis
http://doi.acm.org/10.1145/945721.945732
http://repository.upenn.edu/cis_papers/117
mailto:repository@pobox.upenn.edu

www.manaraa.com

Author(s)
Igor Tatarinov, Zachary G. Ives, Jayant Madhavan, Alon Halevy, Dan Suciu, Nilesh Dalvi, Xin (Luna) Dong,
Yana Kadiyska, Gerome Miklau, and Peter Mork

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/117

http://repository.upenn.edu/cis_papers/117

www.manaraa.com

The Piazza Peer Data Management Project

Igor Tatarinov1, Zachary Ives2, Jayant Madhavan1,
Alon Halevy1, Dan Suciu1, Nilesh Dalvi1, Xin (Luna) Dong1,

Yana Kadiyska1, Gerome Miklau1, Peter Mork1

1Department of Computer Science and Engineering
University of Washington, Seattle, WA 98195

{igor,jayant,alon,suciu,nilesh,lunadong,ykadiysk,gerome,pmork}@cs.washington.e du

2Department of Computer and Information Science
University of Pennsylvania, Philadelphia, PA 19103

zives@cis.upenn.edu

ABSTRACT
A major problem in today’s information-driven world is that
sharing heterogeneous, semantically rich data is incredibly
difficult. Piazza is a peer data management system that en-
ables sharing heterogeneous data in a distributed and scal-
able way. Piazza assumes the participants to be interested in
sharing data, and willing to define pairwise mappings be-
tween their schemas. Then, users formulate queries over
their preferred schema, and a query answering system ex-
pands recursively any mappings relevant to the query, re-
trieving data from other peers. In this paper, we provide a
brief overview of the Piazza project including our work on
developing mapping languages and query reformulation al-
gorithms, assisting the users in defining mappings, indexing,
and enforcing access control over shared data.

1. INTRODUCTION
A major problem in today’s information-driven world is

that sharing heterogeneous, semantically rich data is incred-
ibly difficult. Authoring and publishing Web documents is
very easy; peer-to-peer file sharing systems make file dis-
semination a simple job. No similar level of technology
exists for meaningfully sharing information with different
schemas and representations. This is not entirely surpris-
ing, since sharing semantically rich data is inherently a much
harder problem: data in different schemas must somehow be
mapped or related, queries are much richer, and security is
an important consideration.

Yet, the benefits of semantic data sharing are quite com-
pelling for many applications. Consider the problem of
sharing scientific data. In the past, individual researchers
tended to collect and analyze data in isolation, studying small-
scale phenomena and keeping their data proprietary. To-
day, there is much interest in making data freely available
for use by other researchers, generally with the goal of in-
tegrating and aggregating the data from multiple heteroge-
neous sources to get a bigger picture of the phenomena being
studied. Examples include the SkyQuery project in astron-

omy [16] and the efforts of the Institute for Systems Biol-
ogy [10]. Another emerging application that could greatly
benefit from semantic data sharing is the Semantic Web [3,
8].

A number of past and current data management projects
have explored limited aspects of the problem of sharing se-
mantically rich data in a distributed, heterogeneous world.
Mariposa [18] implemented distributed data sharing across
the wide area, assuming heterogeneity of resources but not
of schema. Research on data integration has addressed prob-
lems in mapping heterogeneous schemas with different ca-
pabilities, under the assumption that a single centralized me-
diated schema (or a hierarchy of mediated schemas) can be
created. Research on the Semantic Web [3, 4] proposes us-
ing highly expressive, knowledge representation-based for-
malisms for describing data semantics — ontologies capture
much more information than database schemas — but they
have largely overlooked issues of translation or mediation
between multiple heterogeneous ontologies.

In Piazza, we focus on the problem of sharing semanti-
cally heterogeneous data in a distributed and scalable way.
The participants in Piazza are data sources interested in shar-
ing data. We start with the observation that participants will
naturally prefer independent but related schemas for their
data, and that their queries will typically be posed from the
context of their preferred schema. Rather than requiring
global agreement on a single unified schema, we provide
query answering capabilities over an arbitrary network of
local schemas and pairwise mappings between them. Our
query answering algorithms take a query posed over any of
these schemas and use the transitive closure of mappings
to return all relevant data in that preferred schema. This
achieves the schema mediation capabilities of a data inte-
gration system, but in a more extensible, decentralized way.
As in peer-to-peer data sharing systems, we also allow any
node to join the system and contribute resources (schemas,
mappings, data, or computation) that improve the overall en-
vironment. Hence, we refer to our architecture as a peer data
management system (PDMS) and a node as a peer.

www.manaraa.com

Area(areaID, name, descr)
Project(projID,areaID, name)
Pub(pubID, title, venue, year)
PubAuthor(pubID, authorID)
PubProj(pubID, projID)
Member(memID, projID, name, pos)
Alumni(name, year, thesis)

Project(projID, name, descr)
Student(studID, name, status)
Faculty(facID, name, rank, office)
Advisor(facID, studID)
ProjMember(projID, memberID)
Paper(papID, title, forum, year)
Author(authorID, paperID)

DB-Projects

UPenn UW Stanford Berkeley

Data Data
Data Data

Area(areaID, name, descr)
Project(projID, name, sponsor)
ProjArea(projID, areaID)
Pubs(pubID, projName, title, venue, year)
Author(pubID, author)
Member(projName, member)

Direction(dirID, name)
Project(pID, dirID, name)
...

Members(memID, name)
Projects(projID, name, startDate)
ProjFaculty(projID, facID)
ProjStudents(projID, studID)
...

Figure 1: A PDMS for a PDMS about database research. Arrows indicate mappings between the relations of the peers. DB-Projects is a virtual,

mediating peer that has no stored data. The figure illustrates how two semantic networks can be joined by establishing a single mapping between a

pair of peers (UW and Stanford in this case).

In order to provide these query and mediation capabilities
at a level appropriate for scientific data sharing, Piazza must
address a number of issues, as we describe in this paper. We
begin in Section 2 by describing our approach to specifying
schema mappings. Section 3 outlines Piazza’s query answer-
ing algorithm. Since mappings are the basis of our system,
but they may be tedious to create, we investigate techniques
for facilitating mapping construction in Section 4. Section 5
discusses our initial work in indexing a semantically hetero-
geneous set of data. Finally, we briefly discuss security and
access control in Section 6, and we conclude in Section 7.

2. SCHEMA MEDIATION
In contrast to a data integration environment, which has

a tree-based hierarchy with data sources schemas at the leaf
nodes and one or more mediated schemas as intermediate
nodes, a peer data management system (PDMS) can support
an arbitrary graph of interconnected schemas. Some of these
schemas are defined virtually for purposes of querying and
mapping. We call these peer schemas, and generally their
relations (peer relations)1 will have an open-world assump-
tion (i.e., the data returned by querying these relations may
be incomplete). Queries in the PDMS will be posed over the
relations from a specific peer schema. A peer schema repre-
sents the peer’s “view of the world” that is unlikely to be the
same at different peers.

Peers may also contribute data to the system in the form
of stored relations. Stored relations are analogous to data
sources in a data integration system: all queries in a PDMS
will be reformulated strictly in terms of stored relations that
may be stored locally or at other peers.

Figure 1 shows a simplified example of a PDMS for shar-

1We use the relational model to simplify the discussion. The imple-
mented Piazza system is based on XML: peer schemas are defined
in XML Schema, queries and mappings are specified in an XQuery-
based language. We refer the interested reader to a more detailed
description of the system in [8].

ing database research-related data. The novelty of the PDMS
lies in its ability to exploit transitive relationships among the
mapping edges between peers’ schemas. The figure shows
that two semantic networks can be fully joined together with
only a few mappings between similar members of each se-
mantic network (in our example, we only required a single
mapping). The new mapping (dashed line) from Stanford to
UW enables any query at any of the five peers to access data
at all other peers through transitive evaluation of semantic
mappings. Importantly, we can add our mappings between
the most similar nodes in the two semantic networks; this is
typically much easier than attempting to map a large number
of highly dissimilar schemas into a single mediated schema
(as in conventional data integration).

There are two types of schema mappings in Piazza. A
mapping that relates two or more peer schemas is called a
peer description, whereas a mapping that relates a stored
schema to a peer schema is called a storage description. Peer
descriptions define the correspondences between the “views
of the world” at different peers. Storage descriptions, on the
other hand, map the data stored at a peer into the peer’s view
of the world. Thus, storage descriptions are similar to data
source descriptions in a data integration system.

Two main formalisms have been proposed for schema me-
diation in data integration systems. In the first, called global-
as-view (GAV) [6], the relations in the mediated schema are
defined as views over the relations in the sources. In the
second, called local-as-view (LAV) [13], the relations in the
sources are specified as views over the mediated schema.

Piazza combines and generalizes the two data integration
formalisms, and it extends them to the XML world in a way
that keeps evaluation tractable. Two kinds of peer descrip-
tions are supported: equality and inclusion descriptions. Peer
descriptions have the following form: Q1(P1) = Q2(P2),
(or Q1(P1) ⊆ Q2(P2) for inclusions) where Q1 and Q2 are
conjunctive queries with the same arity and P1 and P2 are
sets of peers. Intuitively, our mapping statement specifies

www.manaraa.com

q

r0

r1 r1

Query:

Reformulated query:

Storage descriptions:
r1

r3

r1

r3

Q(r1,r2)

ProjMember(r1,p) ProjMember(r2,p)

S1(r1,p,_) S1(r2,p,_)

CoAuthor(r1,r2) CoAuthor(r2,r1)

S2(r1,r2) S2(r2,r1)

q Q(r1, r2) :− SameProject(r1,r2,p),
Author(r1,w), Author(r2,w)

Author(r2,w)Author(r1,w)SameProject(r1,r2,p) ProjMember(r2,p)

 r1 CoAuthor(r1, r2) Author(r1,w), Author(r2,w)

r2 S1(r, p, a) ProjMember(r,p), Area(p,a)

Q’(r1,r2) :− S1(r1,p,_), S1(r2,p,_), S2(r1,r2) U
 S1(r1,p,_), S1(r2,p,_), S2(r2,r1)

r0 SameProject(r1, r2, p) = ProjMember(r1,p),

r3 S2(r1, r2) CoAuthor(r1,r2)

Peer descriptions:

Figure 2: An example reformulation DAG fo the database research domain.

a semantic mapping by stating that evaluating Q1 over the
peers P1 will always produce the same answer (or a subset
in the case of inclusions) as evaluating Q2 over P2.

To avoid ambiguity, we prefix relation names at each peer
with the peer name. The following statement is an example
of an equality mapping between two peers: UW (University
of Washington) and DBProjects (a Database-Projects peer):

DBProjects:Member(pName, member) =
UW:Member(mid, pid, member), UW:Project(pid, pName)

A storage description can also be either an equality (P : R =
Q) or an inclusion (P : R ⊆ Q); here Q is a query over the
schema of peer P and R is a stored relation at the peer. As in
the context of data integration, an inclusion description im-
plies that that the data at the peer may be incomplete, which
corresponds to the open world assumption [1]. The follow-
ing storage description defines the stored relation students
at peer UPenn in terms of UPenn’s peer relations:

UPenn:student(sid, name, advisor) ⊆ UPenn:Student(sid, name),

UPenn:Advisor(sid, fid), UPenn:Faculty(fid, advisor)

The set of mappings of a PDMS defines its semantic net-
work (or topology). Optimizing the topology of a PDMS is
an interesting research problem. Some of the possible opti-
mization criteria include: eliminating redundant mappings,
reducing the diameter of a PDMS (to reduce information
loss in query reformulation), and identifying semantically
unreachable peers. Analyzing the semantic network of a
PDMS requires the ability to compose mappings which is a
challenging problem on its own (see [15] for initial results).

3. QUERYING
Query reformulation is perhaps the single most important

aspect of query processing in a PDMS, since it is crucial
for PDMS’s ability to answer user queries. In this section,
we outline the query reformulation algorithm implemented
in Piazza. (We note again that we limit our discussion to

the relational case; the implemented system uses an XML
query reformulation algorithm that we describe in [8].) The
input of the algorithm is a set of peer mappings and storage
descriptions and a query Q. The output of the algorithm is
a query expression Q′ that refers to stored relations only. To
answer Q we need to evaluate Q′ over the stored relations.
The precise method of evaluating Q′ is beyond the scope of
this paper, but we note that recent techniques for adaptive
query processing [11] are well suited for our context.

Before we describe the algorithm, two points need to be
mentioned. First, by introducing an auxiliary relation (view)
a description of the form Q1(P1) = Q2(P2) can be rewritten
as two simpler descriptions: Q1(P1) = V and V = Q2(P2).
Second, an equality description can be rewritten a pair of in-
clusion descriptions. Hence, we can assume that all descrip-
tions are of the form V ⊆ Q(P) or V ⊇ Q(P).

To provide some intuition for the algorithm, consider a
PDMS in which all peer mappings are of the form V ⊇
Q(P). This case is similar to unfolding GAV mappings in
data integration. The algorithm proceeds by constructing a
simple rule-goal tree [19]: goal nodes are labeled with atoms
of the peer relations, and rule nodes are labeled with peer
mappings. We begin by expanding each query subgoal ac-
cording to the relevant peer mappings in the PDMS. When
none of the leaves of the tree can be expanded any further,
we use the storage descriptions for the final step of reformu-
lation in terms of the stored relations.

At the other extreme, suppose all peer mappings in the
PDMS are of the form V ⊆ Q(P). In this case (that is simi-
lar to LAV mappings in data integration), we begin with the
query subgoals and apply an algorithm for answering queries
using views [7]. We apply the algorithm to the result until
we cannot proceed further, and as in the previous case, we
use the storage descriptions for the last step of reformulation.

A major challenge of the reformulation algorithm is to
combine and interleave the two types of reformulation tech-

www.manaraa.com

niques. One type of reformulation (unfolding) replaces a
subgoal with a set of subgoals, while the other (rewriting)
replaces a set of subgoals with a single subgoal. As a result,
the output of the algorithm can be a DAG rather than a tree
as illustrated by the following example.

Figure 2 shows the reformulation DAG for a simple query,
Q, which asks for researchers who have worked on the same
project and also co-authored a paper. We begin by expand-
ing Q into its three subgoals, each of which appears as a goal
node. The SameProject peer relation (indicating which re-
searchers work on the same project) is involved in peer de-
scription r0, hence we expand the SameProject goal node
with the rule r0, and its children are two goal nodes of the
ProjMember peer relation (each specifying the projects an
individual researcher is involved in).

The Author relation is involved in an inclusion peer de-
scription (r1). We expand Author(r1,w) with the rule node
r1, and its child becomes a goal node of the relation CoAu-
thor. This “expansion” is of different nature because of the
LAV-style reformulation. Intuitively, we are reformulating
the Author(r1,w) subgoal to use the left-hand side of r1.
Note that we must reformulate both Author subgoals at once
because r1 projects out the join variable w. This step is based
on Minicon, an efficient algorithm for query rewriting [7].
Now we must apply description r1 a second time with the
head variables reversed, since CoAuthor may not be sym-
metric (because r1 is an inclusion rather than equality).

At this point, since we cannot reformulate the peer map-
pings any further, we consider the storage descriptions. We
find stored relations for each of the peer relations in the tree
(S1 and S2), and produce the final reformulation. Refor-
mulations of peer relations into stored relations can also be
either in GAV or LAV style. In this simple example, our re-
formulation involves only one level of peer mappings, but in
general, the tree may be arbitrarily deep. Other challenges
that we address when constructing a reformulation DAG in
Piazza are avoiding redundant work through memoization
and pruning [9] and choosing an optimal reformulation or-
der.

4. CONSTRUCTING MAPPINGS
In the previous two sections, we have described Piazza

mappings and how they are used to evaluate queries. Clearly,
another important question is where mappings come from
and how they are created. In Piazza, our goal is also to de-
velop tools and techniques that vastly simplify and assist in
mapping creation.

Mappings between schemas can be constructed in a two-
step process. The first phase is Schema Matching: discover-
ing a match, or a set of correspondences, which identify sim-
ilar elements in schemas that are to be mapped. For example,
a match between the Berkeley and UW projects (see Fig-
ure 1) will include the correspondence: Berkeley.Direction
∼ UW.Area. Such correspondences are statements of sim-
ilarity and have little or no semantics. The second phase

of mapping construction takes these correspondences as in-
puts, and it uses a combination of automatic techniques and
human intervention (as in the Clio system [20]) to provide a
precise mapping.

Our current focus is on automated techniques for schema
matching, i.e. the first phase of mapping construction. Our
approach is characterized by two key properties: using an
ensemble of individual heuristics and algorithms, and ex-
ploiting past experience.

Combining multiple types of evidence: There is a vari-
ety of evidence in schemas that can be exploited by dif-
ferent heuristics or algorithms. For example, the names of
the schema elements, their data instances, their data types,
any accompanying text descriptions, or similarity is schema
structure. However each of these types of evidence is also
typically noisy, and hence hard to exploit, e.g. names have
abbreviations, synonyms, etc., and text descriptions are un-
common and often inconsistent. We propose a multi-strategy
approach that will combine different approaches to exploit
each of these evidences. Our approach is based on the ma-
chine learning technique called stacking. In [5], we demon-
strated that such an approach can yield robust matching per-
formance.

Exploiting past experience: Schema matching tasks are of-
ten repetitive. For example, all the schemas that are be-
ing matched for a particular application are typically in a
single domain (database projects in Figure 1), and hence
will have similar elements. Hence it should be possible to
glean knowledge from known validated mappings among
these schemas and reuse this information for matching new
schema pairs. With this intuition, we are building a corpus-
based schema matcher. A corpus has a collection of schemas,
validated mappings, data instances, and other forms of meta-
data. Statistics can be computed over schema elements in
the corpus and be employed for schema matching. This cor-
pus will evolve over time through a feedback process: the
learned knowledge is applied to match new schemas, and
the schemas and the eventual validated mapping are then as-
similated back into the corpus. In [14] we present prelimi-
nary results of exploiting past experience to schema match-
ing. In this work, classifiers are trained for each unique
element belonging to some schema in the corpus. Future
schema matching tasks are based on the following premise:
two elements can be deemed to be similar if they cannot be
distinguished from each other using the learned classifiers in
the corpus. Our initial results are promising: they demon-
strate good accuracy and strong evidence of evolution, and
this opens an exciting avenue for further research.

Although schema mapping is important in the context of
data sharing, it is equally important to have facilities for
instance-level mapping, i.e., object mapping. Object corre-
spondences are especially important in fields such as biology
and medicine, where the same entity may have many differ-
ent identifiers or names, or over time a given record may
need to be merged with another (or split into two records).

www.manaraa.com

Recent work by Miller et al. [12] exploits a set of related
mappings to infer further object correspondences; we hope
to go even further in inferring correspondences, using con-
tainment and structural relationship information between en-
tities.

5. SEARCHING
A query can be evaluated in a PDMS by sending it (re-

formulated appropriately) to all the peers that might have
answers. In such a scheme, it is absolutely vital that every
query not flood the entire network. Our query reformula-
tion algorithm devotes considerable effort towards pruning
rewritings that are guaranteed to return no results (or redun-
dant results). However, reformulation can only exploit in-
formation contained in the mapping definitions, whereas it
would be desirable to exploit information about the actual
data stored at the peers in order to identify the peers rele-
vant to the user query. One way to address this problem is to
build an index over the peers that is somehow aware of both
schema and value mappings.

As a first step towards addressing this problem, we have
begun development of an index structure that allows simple
value lookup with partial match over structured attributes,
across simple attribute-equivalence mappings. Selection pred-
icates can often be mapped to a similar model, so we feel this
is a good starting point. The key challenge is how to create a
scalable index that returns, for any query, the set of relevant
peers with as few false positives2 as possible.

Index architecture: Our current index implementation is
centralized: this is similar to a search engine on the Web,
and unlike a distributed hash table (DHT) in P2P systems
for file sharing. We plan to extend to a distributed context
in the future, but there are two reasons for this initial de-
sign choice. First, the searches supported by our index are
semantically rich, and cannot be supported by hashing. Sec-
ond, in most applications of peer data management systems
it is realistic to assume that some peer(s) are willing to of-
fer the modest resources needed to service a Piazza index.
Keeping the resource requirements at a minimum is critical
in order to encourage volunteers.

The novelty of our index system is that participating peers
will upload summaries of their data at different granulari-
ties. Unlike many sparse indexing techniques, in which the
sparseness level is controlled by physical parameters such as
page size, we allow each peer to specify data summaries at
an appropriate granularity level. The peer also makes avail-
able to the index all its peer mappings, allowing the index
engine to correlate attributes from different peers — thus
supporting the simplest type of schema mappings. Peers pe-
riodically refresh their data summaries at the index.

Finally, users perform searches by submitting queries to
the index engine and retrieving answers.

The Logical Model: The index uses a very simple data
2Peers that do not have any answers for the query.

model consisting of objects that contain sets of attribute-
value pairs. Thus, a data object is:

d ::= [A1 = v1, A2 = v2, . . . , An = vn] (1)

where A1, . . . , An are attributes and v1, . . . , vn are atomi-
c values. The set of attributes is dynamic. Each peer may
define its own attributes, and even two objects from the same
peer may have different sets of attributes. If a peer mapping
relates two attributes from different peers, this information
is made available to the index in the form of an attribute
mapping, which can have the form A ⊆ B or A = B.

The index supports partial-match queries of the form:

q = [B1 = w1, B2 = w2, . . . , Bp = wp] (2)

Here B1, . . . , Bp are attributes and w1, . . . , wp are con-
stants. Each condition Bi = wi is called a predicate, hence
the query consists of a conjunction of p predicates. The
query q matches a data object d if d satisfies all predicates in
the query. To satisfy some predicate Bi = wi the data object
must contain an attribute value pair Aj = vj s.t. Aj ⊆ Bi

and vj = wi.
A peer may chose to export to the index each data item or

summaries of collections of data items. The latter are like (1)
only now the values v1, . . . , vn are replaced with patterns,
describing constraints on the data. For example, a peer may
export the following two summaries:

s1 = [patientName = "Ge%", stimulus = "%",

age = 55, image="%"]

s2 = [name = "Por%", age IN [50, 70],

disease ="tuberculosis", type = "%"]

The first data summary s1 specifies a set of objects that
have the attributes patientName, stimulus, and im-
age, where the patientName begins with the letters Ge
and the age is 55, but the stimulus is unspecified. This
could mean either that there are several objects at that peer
matching this pattern, or that there is a single such object but
for which the peer does not want to provide the precise value
for patientName or stimulus: however, it is willing
to specify an approximation for them. Similarly, s2 speci-
fies four attributes, one of which has a completely specified
value, the others only partially specified. The pattern for
age is a range.

Note that while individual peers may have very few at-
tributes, the total number of attributes can be large and it can
grow dynamically. Current techniques for answering such
partial-match queries (e.g. [2]) need to know the total num-
ber of dimensions a priori and even then cannot efficiently
handle data with even hundreds of dimensions. We present
a new indexing scheme that scales with the number of at-
tributes of individual peers and searches in time proportional
to the size of the query result.

Implementation: The index maintains a main table RD(Oid,
Attr, Val) containing all attribute value pairs together
with the object id where they occur together. This table

www.manaraa.com

could be sufficient to answer all partial match queries, for
example, query (2) translates into a p-way self-join on RD.
However, this is quite inefficient when none of the base pred-
icates is very selective3. Indeed, the best query execution
plan that a relational engine has in such a case amounts
essentially to a linear scan. To avoid that, the index uses
auxiliary tables at various levels. The level k index has the
schema

Lk(Oid, Attr1, Val1, . . . , Attrk, Valk)

and contains k-tuples of attribute values pairs that occur in
the same data item. Since there are

(

n

k

)

possible tuples for
each object (like (1)), the level k index stores only a sub-
set of such tuples: namely only those for which the num-
ber of objects that contain this tuple is significantly smaller
(by a fixed factor) than the number of objects containing
(Attr1, Val1, . . . , Attrk−1, Valk−1) (the attributes are or-
dered lexicographically). This keeps the size of the level k

indexes small, and Lk usually becomes empty after few lev-
els. A query (2) starts with a lookup in Lp (which is executed
as a clustered index lookup); if the answer is empty, then it
proceeds with a lookup in Lp−1, etc. Each query is thus
answered after at most p lookups. The answer may contain
false positives, but their fraction is guaranteed to be below a
fixed factor chosen by the administrator.

6. SECURITY AND ACCESS CONTROL
Although the goal and emphasis of Piazza is data sharing,

in practice, peers are almost never willing — or even legally
able — to share their data in an uncontrolled way. Usually
a data owner will wish to grant different access rights to dif-
ferent peers in the system. Standard access control meth-
ods are poorly suited for the PDMS setting because they
generally protect data by keeping it behind a secure server
and processing queries on behalf of clients. In forthcom-
ing work [17] we have developed techniques for publishing
a single data instance in a protected form. The published
data is encrypted such that multiple peers can use a single
replica, but are restricted in their access to parts of the data
in accordance with the owners’ preferences. Data owners in
Piazza can specify access control policies declaratively and
generate data instances that enforce them. Access control
rights can be dynamically modified simply by exchanging
cryptographic keys.

7. CONCLUSIONS
In this paper we have presented a brief overview of the Pi-

azza project and some of its focal points. To this point, our
efforts have generally revolved around defining the means
of answering queries in this system: mapping definition,
query reformulation, assistance in mapping creation, index-
ing data, and restricting the use of data to those with per-
mission. Our current implementation already provides many
3If users specify multiple predicates, then it is quite likely that none
of them alone is very selective.

useful capabilities, and we have a running prototype of a
PDMS for academic research.

However, a great deal of exciting future work remains. We
would like to explore richer and more expressive means of
defining mappings and defining semantic information: two
interesting directions are to bring Piazza to a more knowl-
edge representation-based, ontology-driven world, as in most
Semantic Web efforts (we discuss our initial efforts in [8]);
and to add a probabilistic, approximation-based semantics to
our mapping language. The challenge in both of these areas
is maintaining tractability of query reformulation. We are
also interested in the problem of analyzing the semantic net-
work of a PDMS and developing efficient caching strategies
to speed up query execution.

REFERENCES
[1] S. Abiteboul and O. Duschka. Complexity of answering queries

using materialized views. In PODS, 1998.
[2] J. L. Bentley. Multidimensional binary search trees used for

associative searching. CACM, 18(9):509–517, 1975.
[3] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web.

Scientific American, May 2001.
[4] M. Dean, D. Connolly, F. van Harmelen, J. Hendler, I. Horrocks,

D. McGuinness, P. Patel-Schneider, and L. Stein. OWL web ontology
language 1.0 reference, 2002. Manuscript available from
http://www.w3.org/2001/sw/WebOnt/.

[5] A. Doan, P. Domingos, and A. Halevy. Reconciling Schemas of
Disparate Data Sources: A Machine Learning Approach. In
SIGMOD, 2001.

[6] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman,
Y. Sagiv, J. Ullman, and J. Widom. The TSIMMIS project:
Integration of heterogeneous information sources. Journal of
Intelligent Information Systems, 8(2), March 1997.

[7] A. Halevy. Answering queries using views: a survey. VLDB Journal,
10(4), 2001.

[8] A. Halevy, Z. Ives, P. Mork, and I. Tatarinov. Piazza: Data
Management Infrastructure for Semantic Web Applications. In
WWW, 2003.

[9] A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov. Schema Mediation in
Peer Data Management System. In ICDE, 2003.

[10] Institute for Systems Biology. http://www.systemsbiology.org.
[11] Z. Ives, A. Halevy, and D. Weld. Integrating Network-Bound XML

Data. IEEE Data Engineering Bulletin, 24(2), 2001.
[12] A. Kementsietsidis, M. Arenas, and R. Miller. Mapping Data in

Peer-toPeer Systems: Semantics and Algorithmic Issues. In VLDB,
2003.

[13] A. Levy, A. Rajaraman, and J. Ordille. Querying Heterogeneous
Information Sources Using Source Descriptions. In VLDB, 1996.

[14] J. Madhavan, P. Bernstein, K. Chen, A. Halevy, and P. Shenoy.
Corpus-based Schema Matching. In Workshop on Information
Integration on the Web at IJCAI, 2003.

[15] J. Madhavan and A. Halevy. Composing Mappings among Data
Sources. In VLDB, 2003.

[16] T. Malik and A. Szalay. Skyquery: A web service approach to
federate databases. In Proceedings of CIDR, 2003.

[17] G. Miklau and D. Suciu. Controlling Access to Published Data Using
Cryptography. In VLDB, 2003.

[18] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell,
C. Staelin, and A. Yu. Mariposa: A Wide-Area Distributed Database
System. VLDB Journal, 5(1):48–63, 1996.

[19] J. Ullman. Database and Knowledge-Base Systems, volume 2.
Addison-Wesley, 1989.

[20] L.-L. Yan, R. Miller, L. Haas, and R. Fagin. Data Driven
Understanding and Refinement of Schema Mappings. In SIGMOD,
2001.

	University of Pennsylvania
	ScholarlyCommons
	9-1-2003

	The Piazza Peer Data Management Project
	Igor Tatarinov
	Zachary G. Ives
	Jayant Madhavan
	Alon Halevy
	Dan Suciu
	See next page for additional authors
	Author(s)

